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A Novel Hydroformylation Route
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Abstract: 2',3'-Dideoxy-3'-hydroxymethylcytidine (1) has been synthesized via stereoselective Rh-
catalyzed hydroformylation of 2',3'-didehydro-2',3'-dideoxycytidine 3b. This synthesis incorporates the
first successful hydroformylation of a nucleoside olefin. © 1997 Elsevier Science Ltd. All rights reserved.

2',3'-Dideoxy-3'-hydroxymethylcytidine (1), active against HIV, has presented interesting synthetic chal-
lenges.! In particular, investigators exploring glycosidation-based routes to 1 have contended with the non-
stereoselective glycosidation of the pyrimidine base. Only by making special provisions to incorporate tempo-
rary functionality to disrupt the pseudo C-2 symmetry of the sugar moiety of 1 could glycosidation be directed
effectively to the desired g face. To circumvent glycosidation problems, the use of uridine and cytidine as
starting materials was explored. We envisioned an efficient 5 to 7 step route which incorporated a hydro-
metalation-carbonylation sequence on the readily accessible 2',3'-didehydro-2',3'-dideoxynucleoside (3)?
(Scheme). Herein, we report the Rh-catalyzed hydroformylation of 5'-0-N4-diacetyl-2',3'-dideoxy-2',3'-
didehydrocytidine (3b) to afford the corresponding 3'-carboxaldehyde 4b and its transformation to 1.
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Hydroformylations of functionalized alkenes using Rh catalysts are well documented.> Particularly
relevant are hydroformylations of olefinic pyranoses* and protected diols of cyclopent-2-ene’. Literature
precedent, however, does not exist for the hydroformylation of a nucleoside olefin. Our concerns for a hydro-
formylation strategy were: a) the 2' vs. 3' regioselectivity of the hydroformylation,3b$ b) the tendency for cat-
alyzed olefin migration,” and c) whether the integrity of the anomeric stereocenter could be preserved under the
reaction conditions. By comparison, we inferred that the 3'-a vs.-B stereoselectivity of the hydroformylation
could be controlled under kinetic (steric biasing by the 1' and 4' substituents) or thermodynamic conditions.?

Hydroformylation of uracil derivative 3a2* using RhCl(PPh3)3? gave products of 2'-regioselectivity, alde-
hydes Sa and 6, in 10% combined yield, along with less than 5 % of the desired 3'-carboxaldehyde 4a.10
Presumably, 6 arose from g-elimination of uracil from the 2'-carboxaldehyde 5a. To bias the product
distribution toward 3'-carboxaldehyde 4a, other Rh catalysts were explored. Use of RhyO3!! provided a 1:1
ratio of 3' to 2'-hydroformylation products, affording 4a in 12% yield; while use of Rh(CO);acac with PPhj!2
increased the 3' to 2'-regioselectivity to 3:1, providing 4a in 27% yield. Application of the latter conditions to
cytidine derivative 3b? afforded 4b, again with 3:1 regioselectivity, in 32% yield;!3 this resulted in our best
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conditions for hydroformylation. The hydroformylation products of 3b were then carried directly into a
NaBH, reduction. NaBH4 not only reduced the aldehyde to the alcohol, but also cleaved the 5'-O-acetyl and
N4-acetyl groups of 4b to afford 1 in 20% overall isolated yield from 3b. Reversed-phase HPLC analysis of
the crude product 1 from the hydroformylation/ reduction sequence revealed a 94:6-a:p ratio of 3'-C
stereoisomers. This a:f ratio was consistent with that obtained upon intentional equilibration of the 5'-O-trityl
protected analog of 4a under acid or base catalysis,® thus implying that thermodynamic equilibration of the
3'-C stereoisomers may have occurred prior to reduction.

In summary, Rh-catalyzed hydroformylations were conducted on 2',3'-nucleoside olefins to provide the
corresponding 3'a-aldehydes stereoselectively, albeit in modest yield and with modest regioselectivity. This
methodology has been applied as a key step in a concise synthesis of 2',3"-dideoxy-3"-hydroxymethylcytidine.

2',3'-Dideoxy-3'-hydroxymethylcytidine (1). To a 100 mL stainless steel bomb (Parr 4591 Micro Reactor®) was charged
1.0 g of 3b (3.4 mmol, 1.0 equiv), 50 mg of Rh (CO)pacac (0.19 mmol, 0.056 equiv) and 200 mg of triphenylphosphine (0.76
mmol, 0.22 equiv) under a N atmosphere. The reagents were dissolved in S0 mL of dry THF. The bomb was pressurized to 80
psi with a 1:1 mixture of H; and CO and heated to 60 °C. This mixture was stirred at this pressure and temperature for 48 h.
Evaporation of the THF under reduced pressure (15 mm Hg, 40 °C) provided a residue, which was triturated with two-30 mL
portions of toluene to remove the triphenylphosphine and triphenylphosphine oxide; 4b was afforded in 32% yield'0. '"H NMR of
unpurified 4b (300 MHz, THF-dg) & 2.05 (s, 3H), 2.13 (s, 3H), 2.37 (m, 1H), 2.81 (m, 1H), 3.12 (m, 1H), 3.90-4.10 (m, 2H)
4.20-4.40 (m, 1H, d, 1H, J = 7.4 Hz), 5.98(m, 1H), 8.07 (d, 1H, J = 7.4 Hz), 9.63 (s, 1H), 10.05 (bs, 1H). The residue was then
dissolved into 10 mL of absolute ethanol and the solution cooled to 0 °C; whereupon, 235 mg of NaBH, (6 mmol) was added. The
ice bath was removed and the reaction was allowed to warm to 25 °C and remain at 25 °C for 1 hour with stirring. The reaction
was recooled to 0 °C and acetone was added to destroy the excess NaBHy. The reaction was neutralized with 1.0 N HCI until the
pH was between 8-9 and then 0.1 N HC} was used to adjust to pH 7. The solvent was evaporated under reduced pressure (15 mm
Hg, 40 °C). Toluene was added to remove the final traces of water as the azeotrope. Upon evaporation of the toluene azeotrope
1.46 g of crude residue remained. Isolation of 1 by column chromatography (75 CH,Cl,: 25 MeOH: 2 Et3N to 35 CH,Cly: 15
MeOH: 1 EzN) provided 164 mg (20 % yield from 3b). 'H NMR(300 MHz, D,0)! §2.20-2.41 (m, 3H), 3.65 (d, 2H, J = 5.5
Hz), 3.73 (dd, 1H, J = 5.5 Hz, J = 12.5 Hz), 3.89 (dd, 1H, J = 2.8 Hz, J = 12.5 Hz), 4.0 (m, 1H), 6.03, (d, 1H, J = 7.6 Hz), 6.09
(dd, 1H, J = 4.0 Hz, J = 6.5 Hz), 791 (d, 1H, J = 7.6 Hz) !3C NMR (125.75 Hz, D,0)! 6 35.6, 40.7, 48.8, 62.5, 63.0, 84.5,
86.8, 96.5, 142.3, 158.3, 168.8; MS [FAB Exact Mass (M + H)] Calculated for CigH;s04 + H: 242.1141; Found: 242.1140.
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